

GREEN TOP 3 PHILIPPINE BANDED RANK STOP 3 PHILIPPINE BANDED RANK S

PHILIPPINES

SUBMITTED TO: UNIVERSITY EXECUTIVES

DRAFT VERSION

Submitted by: MICHELLE V. JAPITANA, DEng Vice President for Executive Operations and Chairperson, Green Campus Plan Committee October 25, 2025

THE GREEN CAMPUS

COMMITTEE

DR. MICHELLE V. JAPITANA

Vice President for Executive Operations and Committee Chairperson

DR. ALEXANDER T. DEMETILLO

Vice President for Administration and Finance and Committee Co-Chairperson

MEMBERS

AR. MAGICHAEL B. CLORIBEL

Director, Engineering and Construction Office

ENGR. STEPHANIE MAE S. ALBORES

Director, Office of the Planning and Quality Managment Services

ENGR. ARNALDO C. GAGULA

Center Chief, Caraga Center for Geoinformatics

ENGR. CHARLE MAGNE CILLO

Faculty Expert on Energy and Smart Systems, Department of Electronics Engineering

ENGR. JAN REY Q. ELARDO

Faculty Expert on Construction Engineering and Management,
Department of Civil Engineering

ENGR. ERWIN C. MENDOZA

Faculty Expert on Structural Engineering, Department of Civil Engineering

MS. JULIE ROSE APDOHAN

Faculty Expert on Biodiversity and Environmental Management
Department of Environmental Sciences

ENGR. MARIEL C. DELO

Director, General Services Office

GREEN CAMPUS ENERGY PLAN

2025 DRAFT VERSION

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
LEGAL AND POLICY FRAMEWORK	2
CAMPUS BASELINE ENERGY PROFILE	4
THE GREEN CAMPUS VISION AND MISSION	6
GOALS AND TARGETS	7
STRATEGIC ACTION PLAN	8
INSTITUTIONAL MANAGEMENT AND POLICY MEASURES	12
PRIORITIES, KEY PERFORMANCE INDICATORS, & INITIATIVES	13
COST PROJECTIONS AND FINANCIAL	18

Executive Summary

Caraga State University (CSU) is committed to transforming its campuses into models of energy efficiency and sustainability. This Green Campus Energy Plan 2024–2028 outlines CSU's vision of an energy-efficient, renewable-powered university in alignment with national laws and Sustainable Development Goal (SDG) 7 on clean energy. It provides a policy-aligned roadmap for reducing energy consumption, shifting to renewable energy sources, and fostering a culture of conservation among students and staff. The plan was formulated in compliance with the Philippines' Energy Efficiency and Conservation Act (Republic Act No. 11285) and Renewable Energy Act of 2008 (Republic Act No. 9513), ensuring that CSU's initiatives support national mandates and global sustainability targets.

Key goals of the plan include cutting campus energy use and costs, sourcing a significant portion of electricity from renewable sources, and institutionalizing energy management practices. By 2030, CSU aims to source at least 50% of its electricity from renewables and reduce overall energy consumption by 15% relative to the baseline, thereby lowering greenhouse gas emissions and utility expenditures. Achieving these targets will involve a combination of capital projects (such as solar photovoltaic installations and infrastructure retrofits) and management measures (like energy audits, performance monitoring, and community engagement). An interdisciplinary Energy Management Committee will oversee implementation, track key performance indicators (KPIs), and ensure continuous improvement. In summary, this document serves as a comprehensive guide for CSU's journey toward an energy-resilient and environmentally responsible campus, detailing the strategies, investments, timelines, and governance needed to realize the university's green energy vision.

Reach

[₱] **15** million

commulative cost savings by 2030.

Share of campus electricity supplied by renewable energy with

50% increase by 2030.

Expand clean energy initiatives and build the sustainability culture by

2030

LEGAL AND POLICY FRAMEWORK

CSU's energy plan is grounded in the Philippine legal framework on energy conservation and renewable energy, as well as international sustainability commitments. Republic Act No. 11285 (Energy Efficiency and Conservation Act of 2019) provides the primary mandate for institutions to pursue efficiency measures. It declares the policy of the State to "institutionalize energy efficiency and conservation as a national way of life" by implementing energy conservation plans and programs. Under RA 11285, organizations above certain energy usage are deemed "designated establishments" and are required to manage energy use rigorously -including employing certified energy managers and submitting regular energy consumption reports. As a state university with substantial energy demand, CSU aligns its plan with this law by establishing a formal energy management system and complying with all requirements. RA 11285's Implementing Rules and the Inter-Agency Energy and Conservation Committee (IAEECC) likewise government entities (including state universities) to adopt efficient technologies and practices. In fact, IAEECC Resolution No. 11 (s.2025) directs all agencies to procure only appliances and equipment that meet the Department of Energy's Minimum Energy Performance (MEPP) standards and carry Philippine Energy Labeling (PELP) certifications. This plan incorporates those standards in CSU's purchasing and retrofit policies, ensuring that only energy-efficient lights, air-conditioning units, and other devices are used on campus.

Complementing the efficiency mandate, Republic Act No. 9513 (Renewable Energy Act of 2008) establishes the national policy framework for advancing renewable energy (RE). It set in motion the Philippine National Renewable Energy Program (NREP), which outlines strategic targets to drastically increase the country's renewable capacity by 2030. RA 9513 provides incentives for RE development – including tax breaks and net metering provisions that allow institutions to feed excess solar power to the grid for credit. CSU's plan heeds this call by integrating on-site renewable generation (solar photovoltaic systems) and leveraging programs like net metering to maximize their value. The Renewable Energy Act's goal of improving energy security and access to clean energy is mirrored in CSU's campus-level targets for solar power adoption and reduced reliance on fossil-fueled electricity. Through RA 9513's incentives (e.g. duty-free importation of RE equipment and potential government grants), the university can reduce project costs and accelerate renewable installations.

Finally, the plan supports the broader sustainable development agenda, notably United Nations SDG 7: Affordable and Clean Energy. SDG 7 calls for improving energy efficiency and substantially increasing the share of renewables by 2030. CSU explicitly linked its initiatives to SDG 7 when it installed its first solar power system in 2025, signaling the university's contribution to "Affordable and Clean Energy" goals. By aligning with SDG 7 and national energy policies, CSU ensures that its campus energy efforts reinforce the Philippines' climate commitments and the global push for sustainable energy. This policy framework section underscores that the CSU Green Campus Energy Plan 2024–2028 is not only an institutional roadmap but also a fulfillment of legal obligations (RA 11285 and RA 9513) and a proactive step toward national and international energy objectives. The plan was formulated with guidance from these laws and policies to ensure full compliance and to access available support mechanisms (such as the Government Energy Management Program and DOE incentive programs). Notably, under the Government Energy Management Program (GEMP) administered by the DOE, all government entities are mandated to cut energy consumption by at least 10% as a model to the public. CSU's targets meet or exceed this minimum, demonstrating leadership in energy stewardship consistent with government directives.

CAMPUS BASELINE ENERGY PROFILE

A clear understanding of CSU's current energy usage is the foundation of this plan. Baseline energy audits and utility data analyses have been conducted to establish the university's energy profile prior to the implementation of major interventions. CSU operates two campuses (the main campus in Butuan City and a satellite campus in Cabadbaran City) with multiple academic buildings, laboratories, offices, dormitories, and support facilities. According to a detailed audit of the CSU Cabadbaran Campus, annual electricity consumption in 2017 was 157,048 kWh, costing about ₱1.34 million. The main campus in Butuan – being larger with more facilities – has a significantly higher consumption with an average monthly cost of ₱2 million. In total, CSU's combined electricity use in recent years is estimated to be on the order of 1.5–2.0 million kWh per year, which firmly puts the university in the category of a Type 1 designated establishment under RA 11285 (threshold: >500,000 kWh/year). This consumption corresponds to an energy use intensity of roughly ~120 kWh per square meter per year (assuming the total floor area of all buildings), though certain buildings and times of year see much higher intensities due to airconditioning loads. Peak demand occurs during class hours on hot days when cooling systems and equipment run simultaneously, straining both campus transformers and the local grid.

Energy use by end-use category reveals where efficiency efforts should focus. The audits show that the majority of electricity is consumed by equipment and cooling systems, with relatively little by lighting. For example, at the CSU Cabadbaran Campus, it was found that roughly 58% of the total electrical load was from "Other Equipment and Devices" (computers, laboratory apparatus, etc.), 33% from Ventilation and Air Conditioning (HVAC), and only 9% from Lighting. This indicates that while upgrading lighting to LEDs is important, the larger opportunities for saving energy lie in managing HVAC and plug-load efficiency. The top five energy-consuming buildings at CSU (by daily kWh usage) are the main Administration Building, major classroom buildings (e.g. a large two-story building and the Science

building and the Science Building), the IT/Engineering laboratories, and student dormitories. These key structures have high occupancy and host energy-intensive activities (such as computer use and air-conditioned classes), resulting in energy use densities substantially above campus average. Electricity bills form a substantial portion of CSU's operating expenses, with Philippine power rates fluctuating around ₱10−₱15 per kWh (among the highest in Asia). Volatility in energy prices directly impacts the university's finances, underscoring the need for consumption control and alternative energy sources.

It is also noted that prior to this plan, CSU had a University guidelines for conservation measures in place and significant room for improvement in institutional practices. A 2018 study of the Cabadbaran campus revealed that most common energy-saving initiatives were "Not Observed" by faculty and staff – e.g. no formal energy policy, no regular energy audits, limited awareness programs – leading to steadily rising consumption. In other university historically lacked a comprehensive energy management system, which this plan now establishes. Despite this, some positive steps have already been taken as of the baseline year 2023: for instance, inefficient fluorescent lights have gradually been replaced with LEDs when they burn out, and faculty/staff generally turn off lights and devices when not in use (one of the few fully observed conservation behaviors). Importantly, in mid-2025 CSU completed the installation of a 221-kilowatt peak (kWp) solar photovoltaic system on several rooftops (Hinang, Masawa, and Hiraya buildings) on the main campus. This solar PV project – part of the baseline scenario for this plan – is expected to reduce the university's grid electricity consumption by about 15% per month. At current consumption levels, that translates into substantial savings and emission reductions. The baseline energy profile, therefore, is characterized by high but reducible energy intensity, dominance of HVAC and equipment loads, significant cost burdens from electricity, and initial investments (like solar panels) that begin to curb consumption. These baseline findings guide the plan's targets and priority actions, ensuring that strategies address the most critical areas of waste and opportunity.

The Green Campus Vision & Mission

Vision

As a model of communityempowered and sustainabilitydriven university advancing in resource efficiency, resiliency, and environmental innovation by 2030.

Mission

To lead in the green transformation by empowering the community to be a problem solvers and value creators, actively contributing to the development and preservation of a green, resilient, and inclusive learning environment.

Goals and Targets

To drive CSU's energy transition, the plan sets forth clear and measurable goals for the five-year period 2024–2028. These targets align with national requirements (e.g. GEMP's 10% reduction mandate and the university's own vision of sustainability.

Renewable Energy Share

50

%

Percentage increase in the share of campus electricity supplied by renewable energy by 2028.

Energy Consumption Reduction

15

%

Percentage reduction in total electricity consumption (kWh per year) by 2028

Green Energy Management and Compliance

Campus

Efficient Procurement

100%

of new electrical equipment and appliances purchased are

energy-efficient models and DOE compliant Campus

Financial Savings

₱15 Million

commulative cost savings by 2028 through

annual energy consumption reduction

Campus

Efficiency & Conservation Culture

80%

awareness and participation rate in energy-saving campaigns among students, faculty, and staff for an

> energyconscious campus culture

Strategic Action Plan

Achieving CSU's energy goals requires a portfolio of strategic actions across infrastructure, operations, and community behavior. The following major strategies and projects will be pursued between 2024 and 2028

CSU officials and engineers standing atop the new solar photovoltaic array installed on campus (221 kWp system). This on–site solar installation is a cornerstone of CSU's shift towards renewable energy, providing hands–on learning opportunities while cutting electricity costs by $\sim 15\%$

Renewable Energy Deployment

CSU will significantly expand its solar energy capacity. Building on the successful commissioning of 221 kW of rooftop solar PV in 2025 the university plans to install additional solar arrays on available rooftops and grounds in a phased manner. By the end of 2028, CSU will have one of the largest campus-based solar deployments in the Caraga region, visibly symbolizing our commitment to clean energy.

Deployment Across Campuses

By 2026, an additional 100 kWp system will be installed at the Main Campus (e.g. on the new Ladies' Dormitory) and 100 kWp at the Cabadbaran Campus, projects which were already in procurement as of 2025. These will bring total installed capacity to around 421 kW.

Phased Implementation

By 2028, the goal is to reach roughly 500–600 kWp total solar capacity across campuses, enough to supply about half of daytime electricity needs. All solar grid-tied installations will be implemented annually and enrolled in the net metering program so that any excess generation can earn credits or revenue for CSU.

Establish "Living Laboratory and Enhance Resilience

To enhance resilience, the university will explore adding battery energy storage for critical buildings (e.g. data centers or clinics) to store solar power and provide backup during outages. The solar PV expansion not only reduces utility costs but also serves academic purposes: the arrays act as a "living laboratory" for engineering and environmental science students to study renewable energy systems.

Strengthen Partnerships

Partnerships with Department of Energy and industry will be sought for technical support, and operations & maintenance will be ensured by training our faculty and staff.

LED Retrofit Program

A campus-wide lighting retrofit will be executed to replace all remaining inefficient lamps with Light-Emitting Diode (LED) technology. This initiative targets classrooms, offices, libraries, laboratories, dormitories, and outdoor areas (street and perimeter lights). The audit found that while lighting is a smaller share of energy use (\approx 9% at Cabadbaran campus), the savings from LEDs are straightforward and come with improved illumination quality.

STRATEGIES

GREEN PROCUREMENT

By 2026, CSU will strictly adhere to procure energy-efficient lights for bulk purchase of LED tube lights, bulbs, and fixtures by choosing high efficacy LED products (with at least 50–60% lower wattage than fluorescent equivalents).

BY-PHASED IMPLEMENTATION

Retrofit in phases: high-usage areas (lecture halls, main offices, library) by 2026–2027, then remaining classrooms and support areas by 2028. In total, an estimated 2,000 lighting fixtures will be upgraded.

SMART CONTROLS

Occupancy sensors and daylight sensors will be installed in selected locations (conference rooms, restrooms, lobbies) to automatically turn off or dim lights when not needed.

LIGHTING-ENERGY CONSUMPTION CUT

Reduction of lighting energy consumption by 50% or more, yielding approximately a 5% reduction in overall campus electricity use.

LED Retrofitting by 2028.

lighting-energy consumption reduction.

HVAC Optimization and Upgrades

Air conditioning is one of the largest energy drains on campus (accounting for one-third or more of total consumption). To address this, CSU will implement a comprehensive HVAC efficiency program. This program will focus on several key areas to ensure optimal performance and energy savings.

STRATEGIES

SYSTEM OPTIMIZATION AND UPGRADES

By 2028, CSU has implemented a comprehensive HVAC efficiency program. As an ongoing program, CSU prioritized aging and energy-intensive air conditioners units in continuous-use areas (e.g. computer labs, administration offices, and libraries) for replacement with high-efficiency models.

SYSTEM MONITORING AND AUDIT

Starting 2026, CSU will institutionalize annual energy audits for each campus that will analyze building systems, identify inefficiencies, and recommend specific energy conservation measures each year and submit the Annual Campus Energy Consumption and Conservation Report (ECCR).

SMART CONTROLS AND PREVENTIVE MAINTENANCE

Optimize usage through enhanced controls, implementing temperature setpoint policies, and exploiting natural ventilation. Preventive maintenance of HVAC systems will be intensified – filters cleaned monthly, refrigerant levels checked – to maintain peak performance.

BEHAVIORAL AND AWARENESS CAMPAIGN

Target change of daily habits of the campus community. CSU will roll out an extensive energy education and behavior change campaign to foster a culture of conservation; thus will conduct at least one major symposium or webinar per year.

85%

HVAC Retrofitting by 2028.

▲ 15%

HVAC-energy consumption reduction.

Institutional Management and Policy Measures

Caraga State University (CSU) currently lacks a formal governance mechanism to oversee and institutionalize energy efficiency and conservation practices across campuses. Without structured leadership and consistent policy enforcement, past initiatives have been fragmented and unsustained—resulting in energy waste, higher operational costs, and missed opportunities for compliance and funding.

CSU will formally establish an Energy Management Committee (EMC) through an Administrative Order from the University President by early 2024. This body will serve as the central decision-making and monitoring unit for campus energy management, in full alignment with Republic Act No. 11285 and national energy mandates for government institutions.

Governance Structure

CSU will formally establish an Energy Management Committee (EMC) by early 2026. This committee, will be chaired by VP for Administration and Finance and will be composed of technical personnel from ECO, GSO, and faculty with expertise from Colleges. The EMC's mandate is to plan, implement, and monitor energy initiatives and to enforce energy policies on campus.

Knowledge Management and Policy Measures

CSU will strengthen its energy governance through robust knowledge management and policy measures by developing a centralized repository—both physical and digital—that houses energy audit reports, project records, baseline consumption data, procurement benchmarks, and DOE advisories. The university will institutionalize standardized data collection and reporting protocols, assigning specific units to monitor metrics such as kWh per square meter, operating hours, and peak demand, while ensuring documentation continuity across administrative cycles. To reinforce implementation, CSU will deploy a policy enforcement toolkit comprising operational standards for HVAC, lighting, procurement, and behavioral guidelines, along with decision-making checklists for energy-integrated projects and an annual Energy Management Committee report submitted to top administration for review and policy updates.

Compliance Monitoring and Evaluation

To ensure compliance and performance, CSU will adopt a structured monitoring and evaluation (M&E) system anchored on key performance indicators (KPIs), with quarterly EMC reviews and corrective action planning, supplemented by annual assessments aligned with this Green Campus Energy Plan.

Priorities, Key Performance Indicators, & Initiatives

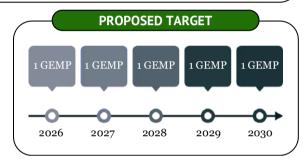
INSTITUTIONALIZE ENERGY GOVERNANCE AND POLICY COMPLIANCE

KEY PERFORMANCE INDICATOR (KPI)

Number of energy - related policy/ies developed, enhanced or improved

PROPOSED TARGET 1 Policy 1 Policy 1 Policy 1 Policy 1 Policy 2026 2027 2028 2029 2030

INITIATIVES


- Implement, review and update university energy-related policies and guidelines to align with the Department of Energy (DOE) standards:
- Develop new policies in support to sustainable, clean, efficient, and renewable energy
- Conduct annual policy review and consultation sessions with stakeholders

KEY PERFORMANCE INDICATOR (KPI)

Government Energy Management Program submitted to GEMP system

INITIATIVES

- Constitution or Reconstitution of the CSU Energy Management
 Committee (EMC) through a Special Order indicating their function
- Conduct workshops to train designated focal persons on GEMP protocols, online system usage, and reporting templates
- Implement energy tagging and labeling of campus facilities and equipment

KEY PERFORMANCE INDICATOR (KPI)

Internal Energy Audit Conducted per year

INITIATIVES

- Conduct compliance audits based on DOE's Energy Efficiency and Conservation (EEC) Act (RA 11285)
- Develop implementation mechanisms for corrective and preventive action for any identified non-compliance issues

KEY PERFORMANCE INDICATOR (KPI)

% of Annual CSU Energy Performance Reports approved and submitted to DOE

INITIATIVES

- Institutionalize **Energy Performance Reporting** with baseline data, achievements, and targets
- Develop an Energy Information Management System (EIMS) for real-time monitoring of consumption
- Establish a **monitoring dashboard** to track performance and compliance metrics

INCREASE THE SHARE OF RENEWABLE ENERGY IN TOTAL CAMPUS POWER SUPPLY

KEY PERFORMANCE INDICATOR (KPI)

Total renewable energy generated (kWh/year)

BASELINE

- **2024** 7745.80 kWh
- 2025 (1st half) -7087.90 kWh

INITIATIVES

- Construction/Installation of Solar PV Systems
- Develop a renewable energy monitoring system to measure real-time generation output
- Seek funding opportunities with CHED, DOST, and other funding agencies on Solar PV Systems projects

KEY PERFORMANCE INDICATOR (KPI)

% reduction in grid electricity consumption per year

INITIATIVES

- Establish mechanism in the implementation and monitoring of Automatic Shutdown Protocols
- Implement load shifting strategies to optimize use of renewable energy during daytime hours
- Promote **behavioral energy** conservation campaigns across colleges and offices

BASELINE

- **2024 -** 0.70%
- **2025 (1st half) -** 0.81%

KEY PERFORMANCE INDICATOR (KPI)

Annual Budget on Operation and Maintenance on Renewable Energy Initiatives ('000)

PROPOSED TARGET 100 100 100 150 150 2026 2027 2028 2029 2030

INITIATIVES

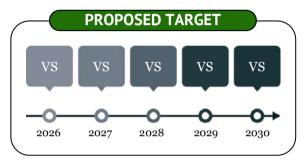
- Institutionalize a budget line for **renewable energy operations and maintenance** in the annual operating budget
- Procure spare parts and components for renewable energy infrastructure
- Develop mechanisms in the implementation of preventive maintenance and performance assessment on renewable energy systems

KEY PERFORMANCE INDICATOR (KPI)

Cost savings from renewable energy ('ooo)

INITIATIVES

- Establish a Renewable Energy Cost-Saving Tracker for financial transparency
- Reinvest savings from renewable energy into sustainability and efficiency projects
- Integrate renewable energy ROI into the university's investment and development plans


PROPOSED TARGET 1500 2000 2000 2500 2500 2026 2027 2028 2029 2030

IMPROVE ENERGY EFFICIENCY IN CAMPUS FACILITIES AND OPERATIONS

KEY PERFORMANCE INDICATOR (KPI)

Very Satisfactory Satisfaction Rating of Buildings with energy efficient system

INITIATIVES

- Establish a Building Performance Feedback
 Mechanism on energy efficient systems
- Develop and administer annual occupant satisfaction surveys focusing on lighting, temperature comfort, ventilation, and overall energy efficiency
- Enhance building comfort by optimizing natural lighting, ventilation, and indoor air quality

KEY PERFORMANCE INDICATOR (KPI)

% of Energy Efficiency Index (EEI) improvement

INITIATIVES

- Establish Energy Management
 System to systematically improve energy efficiency
- Train facility personnel on energy management system (ISO 50001) compliance
- Establish guidelines on the implementation and monitoring of Building Energy Index (BEI) and Energy Usage Index (EUI)

PROMOTE ENERGY EFFICIENCY AND CONSERVATION AWARENESS AMONG STUDENTS, STAFF, AND FACULTY

KEY PERFORMANCE INDICATOR (KPI)

No. of trainees weighted by the length of training on energy efficiency and conservation (hrs)

PROPOSED TARGET 50 50 50 75 75 2026 2027 2028 2029 2030

INITIATIVES

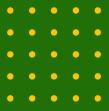
- Conduct of Energy Management Trainings on energy efficiency
- Develop a baseline EEI for CSU and update it annually through audits.
- Conduct joint seminars or workshops to share innovations

KEY PERFORMANCE INDICATOR (KPI)

Approved Reports on energy - related reports

INITIATIVES

- Conduct a Renewable Energy Feasibility Study to determine baseline data for energy demand
- Establish a Standardized Renewable Energy-Related Reports to generate baseline data for energy demand
- Establish a monitoring and evaluation mechanism to track performance and compliance to the energy demand



Cost Projections and Financial Development Plan

The table below presents a summary of the key energy initiatives under CSU's Green Campus Energy Plan 2024–2030, detailing the estimated investment costs, potential funding sources, and projected annual energy savings for each. These initiatives aim to reduce CSU's energy costs, enhance sustainability, and position the university as a regional model for energy-conscious governance.

Initiative	Estimated Cost (₱)	Funding Sources	Projected Annual Savings (₱)	ROI Period
LED Lighting Retrofits (all major buildings)	3,500,000	GAA Capital Outlay, CHED IDIG, Internal CSU Budget	1,000,000	3.5 years
Solar PV System (100kWp phase)	6,000,000	DOE RE Program, Public-Private Partnership (PPP)	1,500,000	4 years
HVAC Upgrade & Scheduling Automation	2,000,000	DBM, Internal Fund	600,000	3.3 years
Energy Monitoring System	1,200,000	CHED Grants, CSU ICT Infrastructure Fund	250,000	4.8 years
Energy Management Training & Capacity	600,000	DOE Technical Assistance, CSU HRD Fund	Non-monetary (performance gains)	-
Policy Rollout & IEC Campaigns	400,000	Internal Budget, External Donor Support (e.g. GIZ)	Indirect savings (behavioral)	_
7. Green Procurement Implementation Tools	300,000	Internal Procurement Reform Budget	Indirect savings	_

Vision

A socially-engaged digital, innovation, and entrepreneurial university excelling globally in science, engineering, and the arts by 2028.

Mission

As a transformative university, CSU is a responsible steward of problemsolvers and value creators who are driven to create a sustainable future for the region, the nation, and beyond.